Generating Physically Realistic Neutron Star Initial Data

Grace Fiacco, Trung Ha Advisor: Dr. Joshua Faber Rochester Institute of Technology

Our Project

- <u>Objective</u>: We will be studying BNS mergers where we vary the masses, mass ratio, and EOS
- <u>Project Status:</u>
 - Compiling a library of BNS initial data using numerical code LORENE
 - Implemented modifications to make Lorene user-friendly and less error prone
 - Working on using Lorene data in Einstein Toolkit
- End Goals:
 - Calculate gravitational waveforms
 - Determine the mass ejecta as a function of various parameters
 - Track the final fate of merger remnants

Background - Why Neutron Stars?

- Binary neutron star (BNS) mergers provide the best joint gravitational wave and electromagnetic sources for multimessenger astrophysics
- Allows us to both test General Relativity and explore nuclear matter equations of state (EOS)
- We require initial data to link observables to physical features of the NS

NASA/Goddard Space Flight Center

Lorene - Overview & History

- Developed in 2001
- Consists of C++ classes that solves partial differential equations through a multi-domain spectral method
- Varying Physical Models
 - Magnetized NS
 - Rotating NS
 - Black holes
 - BH/NS Binaries

Gourgoulhon et al. 2001

Lorene - How it Works

- Uses GR and Tolman-Oppenheimer-Volkov (TOV) Equations to model isolated NS
- Assume quasi-equilibrium
 - Irrotational binary
 - Spatial 3-metric
 - Slow circular inspiral
- Conformal Thin-Sandwich Formalism to solve non-linear elliptic equations
 - Elliptic field equations
 - Elliptic matter equation for the velocity potential

Lorene - How it Works Cont.

Equation of state

- Polytropes: $P=k
 ho^\gamma$
- Piecewise Polytropes
- Several well-known "physically motivated" models
 - APR, FPS, SLy

Running Lorene

- Three steps:
 - Generate the initial mass and radius based on enthalpy guesses
 - Input initial and final masses,
 binary separations, distance steps,
 etc into the main sequence
 - Run coalescence sequence with the provided values

Lorene Configurations and Uses

- Has the ability to generate multiple plots with different characteristics
 - Rotational velocity
 - Metric components
- Compatible with Einstein ToolKit Code for dynamical simulations

Complications & Modifications

- Secant Method for Unequal Binaries
 - Locates the rotation axis of the system. Potential infinite divergence in the function being set to zero
 - <u>Fix:</u> Take the reciprocal of the function allows easier convergence
- Center of Mass & Angular Velocity
 - High mass binaries CoM and angular velocity wanders - crashes code
 - <u>Fix:</u> Created a sequence that can both increase the mass and decrease the separation of the two stars without crashing

Current Work – Einstein Toolkit (ETK)

- Implementing previously generated initial data from Lorene into dynamical simulation using ETK:
 - Reran datasets by research group at Parma University to make sure our version work correctly (De Pietri, Roberto, et al., 2016).
 - Figure out how to convert units from Lorene to ETK for the neutron star density ρ and constant of proportionality K in the equation of state: $P = k\rho^{\gamma}$.
 - Perform dynamical simulations with generated datasets, create movies using VisIT visualization software.

Dynamical Simulations with the Einstein Toolkit

 Preliminary results: dynamical simulations of two configurations, both using AP4 equation of state Star 1: 1.80 solar masses
 Star 1: 1.40 solar masses

Star 2: 1.25 solar masses

Star 1: 1.40 solar masses Star 2: 1.40 solar masses

Summary & Future Work

Past & Current Work

- Modified the Lorene initial data code
 - Mass and radius stepping sequence
- Compiling a public initial data library
- Launching Lorene runs through ETK and creating visualizations

Future

- Perfecting dynamical simulations of our initial data
- Perform various analyses of the simulations
 - Gravitational waveforms
 - Mass ejecta
 - Fate of merger remnants

Acknowledgements & Questions

- Our advisor, Dr. Joshua Faber at the Rochester Institute of Technology
- Our collaborator, Tanmayee Gupte
- The TCAN Collaboration
 - WVU, John Hopkins University, NASA Goddard

